Abstract

Abstract Four different semi-empirical models of heat transfer and pressure drop for helically segmented finned tubes in staggered layout were analyzed. The performance of a Helically Segmented Finned Tubes Heat Exchanger on an industrial scale was obtained and the predictions were compared with experimental data. The method used for thermal analysis is the Logarithmic Mean Temperature Difference (LMTD). Comparisons between predictions and experimental data show a precision greater than 95% in heat transfer for a combination between the Kawaguchi and Gnielinski models at a flue gas Reynolds number, based on the outside bare tube, of about 10,000. In the case of pressure drop, there is a precision of approximately 90% for the Weierman model at a Reynolds number, based on the outside bare tube, of about 10,000. And so, the results show that the best flow regime in which heat transfer and pressure drop are optimum, is for a Reynolds number (based on the outside bare tube) of about 10,000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.