Abstract
We investigated the hydrodynamics in co- and counter-current downer operations using particle image velocimetry (PIV) and computational particle fluid dynamics simulations (CPFD). Pilot-scale experiments were conducted for fluid catalytic cracking (FCC) catalysts and sand, which verified the system stability and provided the validation basis for the simulation strategy. We compared the reactor characteristics of counter-current and co-current downers under different operating modes and conditions using PIV experiments and CPFD simulations. PIV experiments showed that the counter-current downer exhibits a more uniform particle velocity profile, with a gradient of only 8 % of the maximum velocity, compared to the co-current operation, which shows a significantly steeper gradient of 39.5 % from the maximum. Simulations confirmed that the counter-current downer reactor has 69 % higher solid holdup and 98 % longer residence time than the co-current operation. Thus, the counter-current downer reactor demonstrated intermediate behavior between the classical co-current downer and riser reactors, offering flexibility for industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.