Abstract

Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.