Abstract
This paper presents the results of a comprehensive investigation into the comparative analysis and design optimization of ferrite-based surface permanent magnet vernier machines (SPMVMs). While SPMVMs boast a simple mechanical structure and enhanced torque density attributed to the flux modulation effect, they suffer from a persistent challenge of low power factor. Several factors hinder the adoption of low-cost ferrite magnets in SPMVMs. First, ferrite magnets are prone to irreversible demagnetization, constraining the allowable range of magnet thickness. Second, the reduced residual magnetic flux density of ferrite magnets exacerbates the decrease in power factor and machine efficiency. Thus, achieving optimal performance in ferrite-based SPMVMs necessitates the careful selection of various design parameters. To address these issues, this study employs a surrogate-based metaheuristic optimization algorithm with adaptive sampling to identify the optimal solution. Additionally, the integration of a Halbach array is explored to further enhance the performance of the three-slot/two-pole SPMVM topology. Subsequently, two ferrite-based SPMVM baseline models—one with a conventional SPM structure and another with a Halbach magnet array—are thoroughly designed, optimized, and subjected to detailed performance analysis using the 2D finite element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.