Abstract
Four nanometer‐sized zirconia powders stabilized by 3 mol% Y2O3 were used for the preparation of dense bulk ceramics. Ceramic green bodies were prepared by cold isostatic pressing at pressures of 300–1000 MPa. The size of the pores in ceramic green bodies and their evolution during sintering were correlated with the characteristics of individual nanopowders and with the sintering behavior of powder compacts. Only homogeneous green bodies with pores of <10 nm could be sintered into dense bodies (>99% t.d.) at a sufficiently low temperature to keep the grain sizes in the range <100 nm. Powders with uniform particles 10 nm in size yielded green bodies of required microstructure. These nanoparticle compacts were sintered without pressure to give bodies (diameter 20 mm, thickness 4 mm) with a relative density higher than 99% and a grain size of about 85 nm (as determined by the linear intercept method).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.