Abstract

Compact-structured silicon/carbon composites consisting of silicon, graphite, and coal tar pitch pyrolysis carbon are prepared via two heating procedures after liquid solidification. The first heating procedure plays a key role in the formation of compact-structured silicon/carbon composites, in which the coal tar pitch has a good fluidity at 180 °C above the softening temperature, and it is easy to form a uniform coating on the surface of materials. At the same time, the fluidic coal tar pitch could also fill the voids between particles to form compact-structured silicon/carbon composites. As-prepared silicon/carbon composites exhibit moderate reversible capacity of 602.4 mAh g−1, high initial charge-discharge efficiency of 82.3%, and good cycling stability with the capacity retention of 93.4% at 0.1 A g−1 after 50 cycles. It is noteworthy that the synthetic method is scalable which is suitable for mass production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.