Abstract

Single element loop, dipole and conventional square patch antennas have been used as hyperthermia applicators in the treatment of cancerous human cells at superficial depths inside the body. A smaller novel patch antenna in very close proximity to a phantom tissue model produces an enhanced specific absorption rate pattern without significant frequency detuning or impedance mismatch. The new patch increases its coupling aperture by supporting a combination of resonances that are also typical for loop, dipole and square patch antennas. For computation efficiency and clarity in the synthesized hyperthermia treatment conditions, simplified planar tri-layered tissue models interfaced with a water-bolus are used to study the permittivity loading on the antennas and the resultant specific absorption rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.