Abstract

In this paper, multiple-fin n- and p-channel HfZrO2 ferroelectric-FinFET devices are manufactured using a gate first process with post metalization annealing. The device transfer characteristics upon program and erase operations are measured and modeled. The drift in the transfer characteristics due to depolarization field and charge injection are captured using the shift in the threshold voltage along with time-dependent modeling of vertical field dependent mobility degradation parameters to develop a physical, computationally efficient, and accurate retention model for ferroelectric-FinFET devices. The modeled conductance is incorporated into deep neural network simulation platform CIMulator to analyze the role of conductance drift due to retention degradation, as well as the importance of the gap between high and low conductance states in improving the image recognition accuracy of neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.