Abstract

We present a set of building blocks for constructing and utilizing compact, microchip-based, ultrahigh vacuum (UHV) chambers for the practical deployment of cold- and ultracold-atom systems. We present two examples of chip-compatible approaches for miniaturizing UHV chambers--double-magneto-optical-trap cells and channel cells--as well as compact, free-space optical systems into which these cells can be easily inserted and quickly swapped. We discuss progress in atom chip technology, including miniature through-chip electrical feedthroughs and optical windows for transferring light between the trapping region on the chip and the ambient environment. As an example of the latter, we present some of the first through-chip fluorescence images of a Bose---Einstein condensate. High numerical apertures can be achieved with this technique, allowing for submicron resolution. Whether for optical detection, trapping, or control, such fine resolution will have numerous applications in quantum information, especially for experiments based on ultracold atoms trapped in optical lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.