Abstract

A compact focusing crystal spectrometer based on the von Hamos scheme is described. Cylindrically curved mica and graphite crystals with a radius of curvature of R=20 mm are used in the spectrometer. A front illuminated charge-coupled device (CCD) linear array detector makes this spectrometer useful for real-time spectroscopy of laser-produced plasma x-ray sources within the wavelength range of λ=1.8–10 Å. Calibration of crystals and the CCD linear array makes it possible to measure absolute photon fluxes. X-ray spectra in an absolute intensity scale were obtained from Mg, Ti, and Fe laser-produced plasmas, with a spectral resolution λ/δλ=800–2000 for the mica and λ/δλ=200–300 for graphite crystal spectrometers. The spectrometer has high efficiency in a wide spectral range, it is compact (40 mm diam, 150 mm length), easy to align, and flexible. The spectrometer is promising for absolute spectral measurements of x-ray radiation of low-intensity sources (femtosecond laser-produced plasmas, micropinches, electron-beam–ion-trap sources, etc.).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.