Abstract
The present paper uses a new two-level implicit difference formula for the numerical study of one-dimensional unsteady biharmonic equation with appropriate initial and boundary conditions. The proposed difference scheme is second-order accurate in time and third-order accurate in space on non-uniform grid and in case of uniform mesh, it is of order two in time and four in space. The approximate solutions are computed without using any transformation and linearization. The simplicity of the proposed scheme lies in its three-point spatial discretization that yields block tri-diagonal matrix structure without the use of any fictitious nodes for handling the boundary conditions. The proposed scheme is directly applicable to singular problems, which is the main utility of our work. The method is shown to be unconditionally stable for model linear problem for uniform mesh. The efficacy of the proposed approach has been tested on several physical problems, including the complex fourth-order nonlinear equations like Kuramoto–Sivashinsky equation and extended Fisher–Kolmogorov equation, where comparison is done with some earlier work. It is clear from numerical experiments that the obtained results are not only in good agreement with the exact solutions but also competent with the solutions derived in earlier research studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.