Abstract
Since most of the XY positioning stages with large travel range proposed in previous studies suffer from low out-of-plane stiffness and loose structure, this paper presents a novel two degrees-of-freedom large travel linear compliant positioning stage with high out-of-plane stiffness and compact size. The linear guide compliant mechanism of the stage takes spatial leaf spring parallelograms as the basic units, which are serially connected to obtain large travel, high out-of-plane stiffness, and compact size simultaneously. The theoretical static stiffness and dynamic resonant frequency are obtained by matrix structural analysis. Finite element analysis is carried out to investigate the characteristics of the developed stage. The analytical model is confirmed by experiments. It is noted that the developed stage has a workspace of 4.4 × 7.0 mm2, and the area ratio of workspace to the outer dimension of the stage is 0.16%, which is greater than that of any existing stage reported in the literature. The results of out-of-plane payload tests indicate that the stage can sustain at least 20 kg out-of-plane payload without changing the travel range. And the positioning experiments show that the developed stage is capable of tracking a circle of radius 1.5 mm with 10 µm error and the resolution is less than 2 µm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.