Abstract

The differential absorption lidar (DIAL) has been proposed as an effective method for detecting polluted gases in the atmosphere. In this paper, we present a compact and movable ozone differential absorption (O3-DIAL) based on an all-solid-state and tuning-free laser source. For the first time, solid-state stimulated Raman scattering technology is used in the emitting source of the lidar for wavelength conversion. A high repetition frequency Innoslab laser is used for pumping SrWO4 crystals to get yellow lasers which can achieve up to 70% light-to-light conversion efficiency. Our results demonstrate that using the SrWO4 crystal as the Raman frequency-shifting media of the lidar laser source for obtaining the vertical profiles of tropospheric ozone in the Planetary Boundary Layer (PBL) is a suitable choice. As a compact movable lidar system, the results demonstrate the reliability and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.