Abstract
We design an ultracompact, broadband, and low-loss 90-deg optical hybrid coupler using a silicon-on-insulator (SOI) material platform for coherent receivers in optical communication systems. The proposed hybrid coupler uses a cascaded topology that includes five 2 × 2 multimode interference (MMI) couplers in three different fundamental kinds. The working principle of the suggested 90-deg optical hybrid is based on theoretical analysis on the MMI effect and the transfer matrix relations. The optimization of geometrical parameters and the optical characteristics are employing through the numerical simulation method. The investigated 90-deg optical hybrid coupler can be integrated on a microscale footprint as much as 6 μm × 172 μm. Furthermore, our hybrid coupler expresses lots of advantages of optical performances, with an insertion loss lower than 2.6 dB, a common-mode rejection ratio better than −25 dB, and phase error smaller than 5 deg in 90-nm wavelength-bandwidth in the third telecom window. In addition, the designed device, based on the SOI platform, is endowed with large geometrical tolerances possessing width, height, and multimode tolerances corresponding to ±20, ±10, and ±10 nm in the 1-dB variation limit of transmission, respectively. Such advantages of good performances thus make the proposed hybrid device playing the role of a promising potential candidate for widely varying applications of silicon photonics, such as coherent optical receivers, optical interconnects, and high-bitrate optical phase modulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.