Abstract

This paper presents an innovative, flexible and biocompatible Ultra High Frequency meander antenna, operating at about 800 MHz, realized by means of sputtering on a Polyethylene Naphthalate substrate, and by means of a multi-material 3D printer. The fabricated antennas were characterized in terms of scattering parameters, showing a good impedance matching and a bandwidth in the order of tens of megahertz, gain and 3D radiation patterns. A numerical model was also introduced to investigate the limits of the proposed technologies in terms of metal thicknesses. The fabricated antenna could be efficiently integrated with Surface Acoustic Wave resonators to realize compact, wireless, wearable and battery-less sensing platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.