Abstract
Incorporation of cobalt-manganese oxide into the hollow carbonic framework is a prospective way to synthesize eco-friendly and efficient catalyst/adsorbent for advanced oxidation processes and wastewater treatments. Nonetheless, the complex fabrication process remains a major issue hindering the practical application of carbon-based bimetallic oxide catalyst. Herein, a facile and general method is developed to fabricate novel cobalt manganese oxide embedded hollow activated carbon nanofibers (CoxMn3−xO4/HACNFs, x = 0,1,3) by using coaxial electrospinning technique and subsequent thermal treatment. Among the three CoxMn3−xO4/HACNFs, CoMn2O4/HACNFs exhibited the best catalytic activity in PMS activation and Rhodamine B (RhB) degradation, due to the synergistic effect between spinel oxide and hybridized carbon network. Furthermore, HACNFs significantly improved the durability of CoMn2O4 by preventing metal leaching during PMS activation. A marginal decrease in the performance of used CoMn2O4/HACNFs was observed during five cycles, but the performance could be recovered by a simple calcination. A rational PMS activation mechanism of CoMn2O4/HACNFs was proposed. Benefiting from the unique structural features, CoMn2O4/HACNFs exhibited a superior adsorption and catalytic performance for RhB removal under continuous-flow reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.