Abstract

Queues with Markovian arrival and service processes, i.e., MAP/MAP/1 queues, have been useful in the analysis of computer and communication systems and different representations for their stationary sojourn time and queue length distribution have been derived. More specifically, the class of MAP/MAP/1 queues lies at the intersection of the class of QBD queues and the class of semi-Markovian queues. While QBD queues have a matrix exponential representation for their queue length and sojourn time distribution of order N and N2, respectively, where N is the size of the background continuous time Markov chain, the reverse is true for a semi-Markovian queue. As the class of MAP/MAP/1 queues lies at the intersection, both the queue length and sojourn time distribution of a MAP/MAP/1 queue has an order N matrix exponential representation. The aim of this article is to understand why the order N2 distributions of the sojourn time of a QBD queue and the queue length of a semi-Markovian queue can be reduced to an order N distribution in the specific case of a MAP/MAP/1 queue. We show that the key observation exists in establishing the commutativity of some fundamental matrices involved in the analysis of the MAP/MAP/1 queue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.