Abstract

AbstractLet G denote a topological group. In this paper the descending central series of free groups are used to construct simplicial spaces of homomorphisms with geometric realizations B(q, G) that provide a filtration of the classifying space BG. In particular this setting gives rise to a single space constructed out of all the spaces of ordered commuting n–tuples of elements in G. Basic properties of these constructions are discussed, including the homotopy type and cohomology when the group G is either a finite group or a compact connected Lie group. For a finite group the construction gives rise to a covering space with monodromy related to a delicate result in group theory equivalent to the odd-order theorem of Feit–Thompson. The techniques here also yield a counting formula for the cardinality of Hom(π, G) where π is any descending central series quotient of a finitely generated free group. Another application is the determination of the structure of the spaces B(2, G) obtained from commuting n-tuples in G for finite groups such that the centralizer of every non–central element is abelian (known as transitively commutative groups), which played a key role in work by Suzuki on the structure of finite simple groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.