Abstract
In this paper, we are interested in studying a generalized block space (denoted as Bφp,r\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{B}^{p,r}_\\varphi $$\\end{document}) on a space of homogeneous type. We show that this space is the predual of certain generalized Morrey–Lorentz space. By duality, we obtain the Bφp,r\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{B}^{p,r}_\\varphi $$\\end{document}-bound of operators of Calderón–Zygmund type. In addition, we prove a weak Hardy factorization in terms of commutators of integral operator of Calderón–Zygmund type in block spaces. Thanks to the Hardy factorization result, we obtain a characterization of functions in BMO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{BMO}$$\\end{document} via the boundedness of commutators of homogeneous linear Calderón–Zygmund operators in the generalized block space (resp. the generalized Morrey–Lorentz space). Finally, we study a compactness characterization of commutators of Calderón–Zygmund type in generalized Morrey–Lorentz spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.