Abstract
Let K be a field of odd characteristic p, and let G be the direct product of a finite p-group P ≠ 1 and a Hamiltonian 2-group. We show that the set of symmetric elements (KG)* of the group algebra KG with respect to the involution of KG which inverts all elements of G, satisfies all Lie commutator identities of degree t(P) or more, where t(P) denotes the nilpotency index of the augmentation ideal of the group algebra KP. In addition, if P is powerful, then (KG)* satisfies no Lie commutator identity of degree less than t(P). Applying this result we get that (KG)* is Lie nilpotent and Lie solvable, and its Lie nilpotency index and Lie derived length are not greater than t(P) and ⌈ log 2 t(P)⌉, respectively, and these bounds are attained whenever P is a powerful group. The corresponding result on the set of symmetric units of KG is also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.