Abstract

Diazotrophs play a key role in biological nitrogen (N2) fixation. However, we know little about the distribution of the diazotrophic community along the soil profile in paddy fields. Here, we used Illumina MiSeq sequencing, targeting the nitrogenase reductase (nifH) gene, to investigate changes with depth (0-100cm) in the diazotrophic community in paddy soils of three regions (Changshu, Hailun, and Yingtan) in China. The results indicated that most diazotrophs belonged to the phylum Proteobacteria, accounting for 78.05% of the total number of sequences. The diazotrophic diversity was generally highest in the 10-20cm layer, and then significantly decreased with soil depth. Principal coordinate analysis and PERMANOVA indicated that the diazotrophic community structure was significantly affected by region and soil depth. There were obvious differences in the composition of the diazotrophic community between the topsoil (0-40cm) and the subsoil (40-100cm). Anaeromyxobacter, Sideroxydans, Methylomonas, Nostoc, Methanocella, and Methanosaeta were enriched in the topsoil, while Geobacter, Azoarcus, Bradyrhizobium, and Dechloromonas were concentrated in the subsoil. Furthermore, co-occurrence network analysis showed that the diazotrophic network in the topsoil was more complex than that in the subsoil. Distance-based redundancy analysis indicated that soil total C and N content and pH were the main factors influencing the vertical variation in the diazotrophic community. These results highlighted that depth has a great impact on the diazotrophic diversity, community composition, and co-occurrence patterns in paddy soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.