Abstract
Bacterial production of beta-lactamases, which hydrolyze beta-lactam type antibiotics, is a common antibiotic resistance mechanism. Antibiotic resistance is a high priority intervention area and one strategy to overcome resistance is to administer antibiotics with beta-lactamase inhibitors in the treatment of infectious diseases. Unfortunately, beta-lactamases are evolving at a rapid pace with new inhibitor resistant mutants emerging every day, driving the design and development of novel beta-lactamase inhibitors. Here, we examined the inhibitor recognition mechanism of two common beta-lactamases using molecular dynamics simulations. Binding of beta-lactamase inhibitor protein (BLIP) caused changes in the flexibility of regions away from the binding site. One of these regions was the H10 helix, which was previously identified to form a lid over an allosteric inhibitor binding site. Closer examination of the H10 helix using sequence and structure comparisons with other beta-lactamases revealed the presence of a highly conserved Trp229 residue, which forms a stacking interaction with two conserved proline residues. Molecular dynamics simulations on the Trp229Ala mutants of TEM-1 and SHV-1 resulted in decreased stability in the apo form, possibly due to loss of the stacking interaction as a result of the mutation. The mutant TEM-1 beta-lactamase had higher H10 fluctuations in the presence of BLIP, higher affinity to BLIP and higher cross-correlations with BLIP. Our results suggest that the H10 helix and specifically W229 are important modulators of the allosteric communication between the active site and the allosteric site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.