Abstract

The mechanism of the chromophore maturation in members of the green fluorescent protein (GFP) family such as DsRed and other red fluorescent and chromoproteins was analyzed. The analysis indicates that the red chromophore results from a chemical transformation of the protonated form of the GFP-like chromophore, not from the anionic form, which appears to be a dead-end product. The data suggest a rational strategy to achieve the complete red chromophore maturation utilizing substitutions to favor the formation of the neutral phenol in GFP-like chromophore. Our approach to detect the neutral chromophore form expands the application of fluorescent timer proteins to faster promoter activities and more spectrally distinguishable fluorescent colors. Light sensitivity found in the DsRed neutral form, resulting in its instant transformation to the mature red chromophore, could be exploited to accelerate the fluorescence acquisition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.