Abstract

BackgroundPrevious studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single‐nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure.ObjectivesThe main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well‐characterised cohort of infertile men because of severe spermatogenic failure.Materials and methodsA total of 715 infertile men because of severe spermatogenic failure, including 210 severe oligospermia and 505 non‐obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single‐nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case–control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted.ResultsGenetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non‐obstructive azoospermia (adjusted p = 4.96E‐02, odds ratio = 2.97), Sertoli‐cell only syndrome (adjusted p = 2.83E‐02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E‐04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern.ConclusionsSpecific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non‐functional transcript isoform in the testis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.