Abstract

Carotid atherosclerosis is a major cause of stroke, traditionally diagnosed late. Positron emission tomography/computed tomography (PET/CT) with 18 F-sodium fluoride (NaF) detects arterial wall micro-calcification long before macro-calcification becomes detectable by ultrasound, CT or magnetic resonance imaging. However, manual PET/CT processing is time-consuming and requires experience. We compared a convolutional neural network (CNN) approach with manual segmentation of the common carotids. Segmentation in NaF-PET/CT scans of 29 healthy volunteers and 20 angina pectoris patients were compared for segmented volume (Vol) and mean, maximal, and total standardized uptake values (SUVmean, SUVmax, andSUVtotal). SUVmean was the average of SUVmeans within the VOI, SUVmax the highest SUV in all voxels in the VOI, and SUVtotal the SUVmean multiplied by the Vol of the VOI. Intraand Interobserver variability with manual segmentation was examined in 25 randomly selected scans. Bias for Vol, SUVmean, SUVmax, and SUVtotal were 1.33 ± 2.06, -0.01 ± 0.05, 0.09 ± 0.48, and 1.18 ± 1.99 in the left and 1.89 ± 1.5, -0.07 ± 0.12, 0.05 ± 0.47, and 1.61 ± 1.47, respectively, in the right common carotid artery. Manual segmentation lasted typically 20 min versus 1 min with the CNN-based approach. Mean Vol deviation at repeat manual segmentation was 14% and 27% in left and right common carotids. CNN-based segmentation was much faster and provided SUVmean values virtually identical to manually obtained ones, suggesting CNN-based analysis as a promising substitute of slow and cumbersome manual processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.