Abstract

The impact of chemical precursor modification on the electronic properties of chemical solution deposition derived niobium oxide thin-films has been evaluated. It has been found that the application of certain chemical modifications is mandatory in order to obtain electrically insulating thin-films at low processing temperatures. It is emphasized that the devised optimal way of processing for the niobium component is widely contrary to the solution based processing of potassium sodium niobate films reported so far. Regarding the physical nature of the observed instabilities, the phase evolution of solution processed niobium oxide films has been studied. It has been detected that the organic fraction in the precursor solution is stable up to high temperatures and as a result, the low temperature crystalline TT-phase of niobium oxide is preserved up to unusually high processing temperatures. The inherent structural distortion of the unit cells may present a new defect mechanism that has to be further investigated regarding the inferior ferroelectric properties of chemical solution derived potassium sodium niobate thin-films, which are often observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.