Abstract

Ionospheric variability due to atmospheric coupling produces measurable effects in Doppler shift of HF (high frequency, 3–30 MHz) skywave signals. These effects are straightforward to measure with low-cost equipment and are conducive to citizen science campaigns. The Personal Space Weather Station network is a modular network of community-maintained, open-source receivers, which measure Doppler shift in the precise carrier signals of time standard stations WWV, WWVH and CHU. Here, data from the first prototype of the Low-Cost Personal Space Weather Station are presented for a period of time spanning late 2019 to early 2022. Software tools for the visualization and analysis of this living dataset are also discussed and provided. These tools are robust to data interruptions and to the addition, removal or modification of stations, allowing both short- and long-term visualization at higher density and faster cadence than other methods. These data are archived at www.doi.org/10.5281/zenodo.6622111 (Collins, 2022).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.