Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> Aviation emissions that are dispersed into the Earth's atmosphere affect the climate and air pollution, with significant spatiotemporal variation owing to heterogeneous aircraft activity. In this paper, we use historical flight trajectories derived from Automatic Dependent Surveillance–Broadcast (ADS-B) telemetry and reanalysis weather data for 2019–2021 to develop the Global Aviation emissions inventory based on ADS-B (GAIA). In 2019, 40.2 million flights collectively travelled 61 billion kilometres using 283 Tg of fuel, leading to CO<sub>2</sub>, NO<sub>X</sub>, non-volatile particulate matter (nvPM) mass and number emissions of 893 Tg, 4.49 Tg, 21.4 Gg, and 2.8×10<sup>26</sup>, respectively. Global responses to COVID-19 led to reductions in the annual flight distance flown, CO<sub>2</sub>, and NO<sub>X</sub> emissions in 2020 (-43 %, -48 % and -50 %, respectively relative to 2019) and 2021 (-31 %, -41 % and -43 %, respectively) with significant regional variability. Short-haul flights with duration < 3 h accounted for 83 % of all flights, yet only for 35 % of the 2019 CO<sub>2</sub> emissions, while long-haul flights with duration > 6 h (5 % of all flights) were responsible for t43 % of CO<sub>2</sub> and 49 % of NO<sub>X</sub> emissions. Globally, actual flight trajectories flown are, on average, ~5 % greater than the great-circle path between the origin-destination airport but this varies by region and flight distance. An evaluation of 8,705 unique flights between London and Singapore showed large variabilities in the flight trajectory profile, fuel consumption and emission indices. GAIA captures the spatiotemporal distribution of aviation activity and emissions and is provided for use in future studies to evaluate the negative externalities arising from global aviation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.