Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> To fight against the first wave of Coronavirus disease 2019 (COVID-19) in 2020, lockdown measures were implemented in most European countries. These lockdowns had well-documented effects on human mobility. We assessed the impact of the lockdown implementation and relaxation on air pollution by comparing daily particulate matter (PM), nitrogen dioxide (NO<sub>2</sub>), and ozone (O<sub>3</sub>) concentrations, as well as particle number size distributions (PNSD) and particle light absorption coefficients in-situ measurement data with values expected if no COVID-19 epidemic had occurred at 28 sites across Europe for the period 17 February &ndash; 31 May 2020. Expected PM, NO<sub>2</sub> and O<sub>3</sub> concentrations were calculated from the 2020 Copernicus Atmospheric Monitoring Service (CAMS) Ensemble forecasts, combined with 2019 CAMS Ensemble forecasts and measurement data. On average, lockdown implementations did not lead to a decrease in PM<sub>2.5 </sub>mass concentrations at urban sites, while relaxations resulted in a +26 &plusmn; 21% rebound. The impacts of lockdown implementation and relaxation on NO<sub>2</sub> concentrations were more consistent (&minus;29 &plusmn; 17 %, and +31 &plusmn; 30 %, respectively). The implementation of the lockdown measures also induced statistically significant increases in O<sub>3</sub> concentrations at half of all sites (+13 % on average). An enhanced oxidizing capacity of the atmosphere could have boosted the production of secondary aerosol at those places. Changes in the wavelength dependence of the particle light absorption coefficients and PNSD were also examined at 14 and 13 sites, respectively. Since these variables are not calculated by the CAMS model, expected values were estimated from 2017&ndash;2019 measurement data. A significant change in the relative contributions of wood and fossil fuel burning to the concentration of black carbon during the lockdown was detected at 7 sites. The contribution of particles smaller than 70 nm to the total number of particles significantly changed at most of the urban sites, with a mean decrease of &minus;7 &plusmn; 5 % coinciding with the lockdown implementation. Our study shows that the response of PM<sub>2.5</sub> and PM<sub>10</sub> mass concentrations to lockdown measures was not systematic at various sites across Europe for multiple reasons, the relationship between road traffic intensity and particulate air pollution being more complex than expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.