Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> In study presented here we focus on the large climate-ice sheet feedbacks on global scales on time scales of 100,000 yrs. We conducted a series of idealised sensitivity experiments under CO<sub>2</sub> and solar radiation reduction scenarios with the Globally Resolved Energy Balance - Ice Sheet Model v1.0 (GREB-ISM v1.0), to study the characteristics of five climate-ice sheet feedbacks, including albedo, snowfall, ice latent heat, topography and sea level feedbacks. We analysed the relative importance of each of these feedbacks on the ice sheet growth and on the climate system (surface temperature). The results indicate that the inclusion of ice sheets will delay the response to the external forcing and facilitate the climate cooling in the high latitude and altitude areas in the Northern Hemisphere, but also causes a small amount of warming elsewhere, due to the blocking of atmospheric heat transport. As for individual feedbacks, the albedo feedback is the most dominant positive feedback in favour of ice sheet build-up and cooler climates, whereas snowfall feedback is the greatest negative feedback that reduces the growth of ice sheets. The large ice latent heat required to melt ice allows to maintain ice sheets from one cold seasons to the next and therefore provides a positive feedback for ice sheet growth. The ice sheets impact on the topography is also a positive feedback but with smaller impact than the albedo feedback. The sea level change influences ice sheets by shifting their location, in particular allowing ice sheets growth in the Arctic Ocean, while reducing it over central north Asia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.