Abstract

<strong class="journal-contentHeaderColor">Abstract.</strong> Low-intensity but high-frequency coastal flooding, also known as nuisance flooding, can negatively affect low-lying coastal communities with potentially large socioeconomic effects. This flooding also can greatly affect post-storm coastal dune recovery and reduce the long-term resilience of the back-barrier ecosystem. Recent analytical work has hypothesized that these frequent flooding events are uncorrelated in time and can be modeled as a marked Poisson process with exponentially distributed sizes, a result with important implications for the prediction of coastal flooding. Here we test this proposition using high-temporal-resolution field measurements of an eroding beach on the Texas coast. A time series of the flooded area was obtained from pictures using Convolutional Neural Network (CNN)-based semantic segmentation methods. After defining the flooding events using a peak-over-threshold method, we found that the size of the flooding events indeed followed an exponential distribution as hypothesized. Furthermore, the flooding events were uncorrelated with one another at daily time scales, but correlated at hourly time scales. Finally, we found relatively good statistical agreement between our CNN-based empirical flooding data and run-up predictions. Our results formalize the first probabilistic model of coastal flooding events driven by wave run-up which can be used in coastal risk management and landscape evolution models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.