Abstract
In the ocean, meso / submesoscale structures and coastal processes are associated with fine scales. The simulation of such features thus requires the hydrodynamic equations to be solved at high-resolution (from a few hundred meters down to a few tens of meters). Therefore, local mesh refinement is a primary issue for regional and coastal modelling. As over structured grids, AGRIF (Adaptive Grid Refinement In Fortran) library is committed to tackle this challenge. It has been implemented in MARS3D, which is a numerical model developed by Ifremer (the French research institute for the exploitation of the sea) for coastal environmental researches and studies. The present paper describes how the dedicated implementation preserves some essential principles (mass conservation, constant preserving…) along with the induced constraints. The use and the performance of this new tool are detailed over two configurations that illustrate the wide range of scales and resolutions typically targeted by coastal applications. The first one is based on multiple high-resolution (500 m) grids that pave the coastal ocean over thousands of kilometres, allowing a continuum between the regional and coastal scales. The second application is more local and has a finer resolution (50 m). It targets a recurrent question for semi-enclosed bays: the renewal time indicator. Throughout these configurations, the paper intends at comparing the two-way nesting method with the traditional one-way approach and highlights how MARS3D-AGRIF tool proves to be an efficient way significantly improve the physical hydrodynamics and bring it biological issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.