Abstract
Society is set to experience significant land cover changes in order to achieve the temperature goals agreed upon under the Paris Agreement. Such changes carry both global implications, pertaining to the biogeochemical effects of land cover change and thus the global carbon budget, and regional/local implications, pertaining to the biogeophysical effects arising within the immediate area of land cover change. Biogeophysical effects of land cover change are of high relevance to national policy- and decision- makers and their accountance is essential towards effective deployment of land cover practices that optimises between global and regional impacts. To this end, ESM outputs that isolate the biogeophysical responses of climate to land cover changes are key in informing impact assessments and supporting scenario development exercises. Generating multiple such ESM outputs, in a manner that allows comprehensive exploration of all plausible land cover scenarios however, is computationally untenable. This study proposes a framework to agilely explore the local biogeophysical responses of climate under different land cover scenarios by means of a computationally inexpensive emulator. The emulator is novel in that it solely represents the land cover forced, biogeophysical responses of climate, and can be used as either a standalone device or supplementary to existing climate model emulators that represent greenhouse gas (GHG)- or Global Mean Temperature (GMT)- forced climate responses. We start off by modelling local minimum, mean and maximum surface temperature responses to tree cover changes by means of a month- and Earth System Model (ESM)- specific Generalised Additive Model (GAM) trained over the whole globe. 2-m air temperature responses are then diagnosed from the modelled minimum and maximum surface temperature responses using observationally derived relationships. Such a two-step procedure accounts for the different physical representations of surface temperature responses to tree cover changes under different ESMs, whilst respecting a definition of 2-m air temperature that is more consistent across ESMs and with observational datasets. In exploring new tree cover change scenarios, we employ a parametric bootstrap sampling method to generate multiple possible temperature responses, such that the uncertainty within the GAM's derived shape of the response is also quantified. The output of the final emulator is demonstrated for the SSP 1-2.6 and 3-7.0 scenarios. Relevant temperature responses are identified as those displaying a clear signal in relation to the surrounding uncertainty in shape of derived response, calculated as the "signal-to-noise" ratio between the sample set mean and sample set variability. The emulator framework developed in this study thus provides a first step towards bridging the information-gap surrounding biogeophysical implications of land cover changes, allowing for smarter land-use decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.