Abstract

In this paper, two energy management controllers: Binary Particle Swarm Optimization Fuzzy Mamdani (BPSOFMAM) and BPSOF Sugeno (BPSOFSUG) are proposed and implemented. Daily and seasonally used appliances are considered for the analysis of the efficient energy management through these controllers. Energy management is performed using the two Demand Side Management (DSM) strategies: load scheduling and load curtailment. In addition, these DSM strategies are evaluated using the meta-heuristic and artificially intelligent algorithms as BPSO and fuzzy logic. BPSO is used for scheduling of the daily used appliances, whereas fuzzy logic is applied for load curtailment of seasonally used appliances, i.e., Heating, Ventilation and Air Conditioning (HVAC) systems. Two fuzzy inference systems are applied in this work: fuzzy Mamdani and fuzzy Sugeno. This work is proposed for the energy management of the hottest areas of the world. The input parameters are: indoor temperature, outdoor temperature, occupancy, price, decision control variables, priority and length of operation times of the appliances, whereas the output parameters are: energy consumption, cost and thermal and appliance usage comfort. Moreover, the comfort level of the consumers regarding the usage of the appliances is computed using Fanger's predictive mean vote method. The comfort is further investigated by incorporating the renewable energy sources, i.e., photovoltaic systems. Simulation results show the effectiveness of the proposed controllers as compared to the unscheduled case. BPSOFSUG outperforms to the BPSOFMAM in terms of energy consumption and cost of the proposed scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.