Abstract

Abstract Recent observations show activity in long-period comet C/2017 K2 at heliocentric distances beyond the orbit of Uranus. With this as motivation, we constructed a simple model that takes a detailed account of gas transport modes and simulates the time-dependent sublimation of supervolatile ice from beneath a porous mantle on an incoming cometary nucleus. The model reveals a localized increase in carbon monoxide (CO) sublimation close to heliocentric distance r H = 150 au (local blackbody temperature ∼23 K), followed by a plateau and then a slow increase in activity toward smaller distances. This localized increase occurs as heat transport in the nucleus transitions between two regimes characterized by the rising temperature of the CO front at larger distances and nearly isothermal CO at smaller distances. As this transition is a general property of sublimation through a porous mantle, we predict that future observations of sufficient sensitivity will show that inbound comets (and interstellar interlopers) will exhibit activity at distances far beyond the planetary region of the solar system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.