Abstract
In this study, an attempt was made to decipher the underlying differential response mechanism of Klebsiella sp. KL-1 induced by exposure to disparate categories of dyestuffs in xylose (Xyl) co-metabolic system. Here, representative reactive black 5 (RB5), remazol brilliant blue R (RBBR) and malachite green (MG) belonging to the azo, anthraquinone and triphenylmethane categories were employed as three model dyestuffs. Klebsiella sp. KL-1 enabled nearly 98%, 80% or 97% removal of contaminants in assays Xyl+RB5, Xyl+RBBR or Xyl+MG after 48h, which was respectively 16%, 11% or 22% higher than those in the assays devoid of xylose. LC-QTOF-MS revealed an increased formation of smaller molecular weight intermediates in assay Xyl+RB5, whereas more metabolic pathways were deduced in assay Xyl+RBBR. Metaproteomics analysis displayed remarkable proteome alteration with regards to the structural difference effect of dyestuffs by Klebsiella sp. KL-1. Significant (p-value<0.05) activation of pivotal candidate NADH-quinone oxidoreductase occurred after 48h of disparate dyestuff exposure but with varying abundance. Dominant FMN-dependent NADH-azoreductase, Cytochrome d terminal oxidase or Thiol peroxidase were likewise deemed to be responsible for the catalytic cleavage of RB5, RBBR or MG, respectively. Further, the differential response mechanism towards the structurally discrepant dyestuffs was put forward. Elevated reducing force associated with the corresponding functional proteins/enzymes was transferred to the exterior of the cell to differentially decompose the target contaminants. Overall, this study was dedicated to provide in-depth insights into the molecular response mechanism of co-metabolic degradation of refractory and structurally discrepant dyestuffs by an indigenous isolated Klebsiella strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.