Abstract

The chemical composition of palm and rapeseed biodiesel (fatty acid methyl ester, FAME) was analyzed by gas chromatography-mass spectrometry. Combustion characteristics of biodiesel were studied by thermogravimetry-differential scanning calorimetry and collision theory. Combustion characteristic index C was put forward for describing biodiesel combustion characteristic. The reactive atom combustion mechanism was put forward. Biodiesel combustion process comprised three steps, viz., volatilizing, dissociating and combining. First, biodiesel volatilizes, viz., FAME (liquid) volatilize and became FAME (gas). Second, FAME, O2 and N2 molecular were dissociated into C*, H*, O* and N* reactive atoms. Third, C*, H* and N* reacted, respectively, with O* to CO2, CO, H2O and NOx, and released energy. The study showed that the biodiesel was mainly composed of FAME: C14:0-C24:0, C16:1-C22:1, C18:2 and C18:3. Biodiesel had a good burnability. Combustion characteristic indexes of palm methyl ester (PME) and rapeseed methyl ester (RME) were 4.97E-05 and 3.65E-05, respectively. The combustion characteristic had relation to chemical composition. The combustion characteristic of biodiesel was better with increasing saturated fatty acid methyl esters and length of carbon-chain, and was poorer with increasing unsaturated fatty acid methyl esters and unsaturated degree. The combustion characteristic of PME was better than that of RME.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.