Abstract

ABSTRACT The unmanned aerial vehicle (UAV) image spectral information and texture feature (TF) information were fused to develop an improved model for winter wheat leaf nitrogen content (LNC) monitoring model to provide a reference for wheat nitrogen status monitoring and accurate management. The data of wheat LNC and UAV-hyperspectral imaging were simultaneously obtained at the main growth stages (jointing, booting, and filling stages) of various winter wheat varieties under various nitrogen fertilizer treatments. The correlation between the vegetation indexes (VIs) in combination of any two bands, the TFs, and LNC were systematically analyzed. Then, the optimal VIs and TFs without multicollinearity problems were screened using a variance inflation factor (VIF) to form a ‘graph–spectrum’ fusion index. Four machine learning methods, namely ridge regression (RR), partial least squares regression (PLSR), support vector machine regression (SVR), and random forest (RF), were used to construct respective quantitative winter wheat LNC estimation models. The results revealed that the model for estimating LNC constructed using the ‘graph–spectrum’ information formed by eight parameters, including the normalized vegetation index NDVI (R 578, R 490), the difference vegetation index DVI (R 830, R 778), MEA490, MEA778, VAR490, VAR578, VAR778, and HOM578 as input and the RR algorithm, performed the best. It outperformed the models developed by the implementation of VIs and TFs as input. The coefficient of determination (R 2 ), root mean square error (RMSE), and relative percent deviation (RPD) of the calibration set were 0.84, 0.25, and 2.50, correspondingly, and those of the validation set were 0.87, 0.27, and 2.33, respectively. The model of winter wheat LNC constructed by fusing spectral and TF information considerably improved the prediction accuracy. The present research results provide a basis and reference for the application of UAV hyperspectral technology in wheat nitrogen nutrient monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.