Abstract

The problem of estimating the Poisson mean is considered based on the two samples in the presence of uncertain prior information (not in the form of distribution) that two independent random samples taken from two possibly identical Poisson populations. The parameter of interest is λ1 from population I. Three estimators, i.e. the unrestricted estimator, restricted estimator and preliminary test estimator are proposed. Their asymptotic mean squared errors are derived and compared; parameter regions have been found for which restricted and preliminary test estimators are always asymptotically more efficient than the classical estimator. The relative dominance picture of the estimators is presented. Maximum and minimum asymptotic efficiencies of the estimators relative to the classical estimator are tabulated. A max-min rule for the size of the preliminary test is also discussed. A Monte Carlo study is presented to compare the performance of the estimator with that of Kale and Bancroft (1967).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.