Abstract
We report on the synthesis of polysarcosine-block-poly(S-alkylsulfonyl)-l-cysteine block copolymers, which combine three orthogonal addressable groups enabling site-specific conversion of all reactive entities in a single step. The polymers are readily obtained by ring-opening polymerization (ROP) of corresponding α-amino acid N-carboxyanhydrides (NCAs) combining azide and amine chain ends, with a thiol-reactive S-alkylsulfonyl cysteine. Functional group interconversion of chain ends using strain-promoted azide-alkyne cycloaddition (SPAAC) and activated ester chemistry with NHS- and DBCO-containing fluorescent dyes could be readily performed without affecting the cross-linking reaction between thiols and S-alkylsulfonyl protective groups. Eventually, all three functionalities can be combined in the formation of multifunctional disulfide core cross-linked nanoparticles bearing spatially separated functionalities. The simultaneous attachment of dyes in core and corona during the formation of core-cross-linked nanostructures with controlled morphology is confirmed by fluorescence cross-correlation spectroscopy (FCCS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.