Abstract
AbstractOver the past few years, Bayesian models for combining output from numerical models and air monitoring data have been applied to environmental data sets to improve spatial prediction. This paper develops a new hierarchical Bayesian model (HBM) for fine particulate matter (PM2.5) that combines U. S. EPA Federal Reference Method (FRM) PM2.5 monitoring data and Community Multi‐scale Air Quality (CMAQ) numerical model output. The model is specified in a Bayesian framework and fitted using Markov Chain Monte Carlo (MCMC) techniques. We find that the statistical model combining monitoring data and CMAQ output provides reliable information about the true underlying PM2.5 process over time and space. We base these conclusions on results of a validation exercise in which independent monitoring data were compared with predicted values from the HBM and predictions from a standard kriging model based solely on the monitoring data. Copyright © 2009 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.