Abstract

Understanding the structure and dynamics of biological macromolecules is essential to decipher the molecular mechanisms that underlie cellular functions. The description of structure and conformational dynamics often requires the integration of complementary techniques. In this review, we highlight the utility of combining nuclear magnetic resonance (NMR) spectroscopy with small angle scattering (SAS) to characterize these challenging biomolecular systems. NMR can assess the structure and conformational dynamics of multidomain proteins, RNAs and biomolecular complexes. It can efficiently provide information on interaction surfaces, long-distance restraints and relative domain orientations at residue-level resolution. Such information can be readily combined with high-resolution structural data available on subcomponents of biomolecular assemblies. Moreover, NMR is a powerful tool to characterize the dynamics of biomolecules on a wide range of timescales, from nanoseconds to seconds. On the other hand, SAS approaches provide global information on the size and shape of biomolecules and on the ensemble of all conformations present in solution. Therefore, NMR and SAS provide complementary data that are uniquely suited to investigate dynamic biomolecular assemblies. Here, we briefly review the type of data that can be obtained by both techniques and describe different approaches that can be used to combine them to characterize biomolecular assemblies. We then provide guidelines on which experiments are best suited depending on the type of system studied, ranging from fully rigid complexes, dynamic structures that interconvert between defined conformations and systems with very high structural heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.