Abstract

In nature, organisms experience combinations of stressors. However, laboratory studies typically simplify reality and focus on the effects of an individual stressor. Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (H 2 O 2 ) to the human pathogen Pseudomonas aeruginosa . By treating cells with levels of flow and H 2 O 2 that commonly co-occur in nature, we discover that previous reports significantly overestimate the H 2 O 2 levels required to block bacterial growth. Specifically, we establish that flow increases H 2 O 2 effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural H 2 O 2 levels, we identify the core H 2 O 2 regulon, characterize OxyR-mediated dynamic regulation, and dissect the redundant roles of multiple H 2 O 2 scavenging systems. By examining single-cell behavior, we serendipitously discover that the combined effects of H 2 O 2 and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of H 2 O 2 and flow synergize to restrict bacterial colonization and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.