Abstract

A short petiole is an important agronomic trait for the development of plant ideotypes with high yields. However, the genetic basis underlying this trait remains unclear. Here, we identified and characterized a novel soybean mutant with short petioles and weakened pulvini, designated as short petioles and weakened pulvini (spwp). Compared with the wild type (WT), the spwp mutant displayed shortened petioles, owing to the longitudinally decreased cell length, and exhibited a smaller pulvinus structure due to a reduction in motor cell proliferation and expansion. Genetic analysis showed that the phenotype of the spwp mutant was controlled by two recessive nuclear genes, named as spwp1 and spwp2. Using a map-based cloning strategy, the spwp1 locus was mapped in a 183 kb genomic region on chromosome 14 between markers S1413 and S1418, containing 15 annotated genes, whereas the spwp2 locus was mapped in a 195 kb genomic region on chromosome 11 between markers S1373 and S1385, containing 18 annotated genes. Based on the whole-genome re-sequencing and RNA-seq data, we identified two homologous genes, Glyma.11g230300 and Glyma.11g230600, as the most promising candidate genes for the spwp2 locus. In addition, the RNA-seq analysis revealed that the expression levels of genes involved in the cytokinin and auxin signaling transduction networks were altered in the spwp mutant compared with the WT. Our findings provide new gene resources for insights into the genetic mechanisms of petiole development and pulvinus establishment, as well as soybean ideotype breeding.

Highlights

  • The geometrical and topological organization of components of various plant types and shapes defines the architecture of plants [1]

  • Short petioles are potentially useful for improving the per unit yield by altering the canopy profile and increasing planting density in soybean

  • The short petiole trait in SS98206SP was controlled by a single recessive gene designated as lps3, which was mapped on chromosome 13 between Simple Sequence Repeat (SSR) markers Sat_234 and Sct_033 [4,44]

Read more

Summary

Introduction

The geometrical and topological organization of components of various plant types and shapes defines the architecture of plants [1]. This mainly includes stem growth habit, branching pattern, plant height, internode length, petiole length, and leaf size as well as shape in soybean. Among these components, petiole length is an important factor that influences canopy architecture that directly affects light interception efficiency, photosynthetic efficiency, and, yield. The short petiole trait is potentially useful for improving the per unit yield by improving planting density and altering the canopy profile in soybean [2–4]. Stable GmMYB14-overexpressing transgenic soybean plants displayed a compact plant architecture with short petioles that can be cultivated under higher density, thereby showing increased yields [5].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.