Abstract
The combination of enhanced resolving power and improved duty cycle on a multireflecting time-of-flight mass spectrometer is described. Resolving power increases are achieved by extending the effective ion path length from 47 m to greater than 200 m. Path length increases are achieved through containment of ions within the analyzer for up to N = 5 passes using a pulsed deflection electrode. Resolving power was shown to increase from 220,000 to 402,000 (fwhm) at m/z 785 for N = 1 and N = 4 analyzer passes, respectively. Due to the timing of the pulsed deflection electrode, the approach is particularly suited to high resolution analysis over a targeted m/z range. Duty cycle enhancements are achieved for ions of the targeted m/z range via accumulation prior to orthogonal acceleration, providing signal improvements of 2 orders of magnitude. Achieving such high resolving powers at fast scan rates (30 Hz) can yield additional information such as fine isotope structure; when combined with ppb mass measurement accuracy, high confidence in analyte identification can be achieved. The technique is applied for N = 2 analyzer passes, demonstrating fine isotope structure for a typical UHPLC metabolite identification experiment at a 10 Hz acquisition rate. Additionally, mass spectrometry imaging data is acquired using DESI, demonstrating the improved image clarity achieved at >300,000 (fwhm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.