Abstract

One of the main challenges in motor control is expressing high-level goals in terms of low-level actions. To do so effectively, motor control systems must reason about actions at different levels of abstraction. Grounding high-level plans in low-level actions is essential semantic knowledge for plan-based control of real robots. We present a robot control system that uses declarative, procedural and predictive knowledge to generate, execute and optimize plans. Declarative knowledge is represented in PDDL, durative actions constitute procedural knowledge, and predictive knowledge is learned by observing action executions. We demonstrate how learned predictive knowledge enables robots to autonomously optimize plan execution with respect to execution duration and robustness in real-time. The approach is evaluated in two different robotic domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.