Abstract
Hyperspectral image classification has a low accuracy in the face of a small training set. To solve the problem, this paper proposes a combined spatial-spectral hyperspectral image classification approach based on adaptive guided filtering. From coarse to fine classification, the local binary pattern (LBP) histogram features were improved, the spatial contrast description was enhanced, and enhanced spatial-spectral features were prepared through Gabor transform of different scales and directions, combined with super pixel blocks. Then, the pre-classification was completed by the support vector machine (SVM) classifier. To reduce noise interference, the pre-classification results were filtered again by a guided filter based on the adaptive regularization factor. To verify its effectiveness, the proposed approach was compared with the state-of-the-arts approaches through repeated experiments. The comparison shows that our approach achieved a high classification accuracy, while suppressing noise interference. This research provides a new tool for hyperspectral image classification with a small training set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.