Abstract

Device-to-device (D2D) communication is an effective technology enhancing spectral efficiency and network throughput of contemporary cellular networks. Typically, the users exploiting D2D reuse the same radio resources as common cellular users (CUEs) that communicate through a base station. This mode is known as shared mode. Another option is to dedicate specific amount of resources exclusively for the D2D users in so- called a dedicated mode. In this paper, we propose novel combined share/dedicated resource allocation scheme enabling the D2D users to utilize the radio resources in both modes simultaneously. To that end, we propose a graph theory-based framework for efficient resource allocation. Within this framework, neighborhood relations between the cellular users and the D2D users and between the individual D2D users are derived to form graphs. Then, the graphs are decomposed into subgraphs to identify resources, which can be reused by other users so that capacity of the D2D users is maximized. The results show that the sum D2D capacity is increased from 1.67 and 2.5 times (depending on a density of D2D users) when compared to schemes selecting only between shared or dedicated modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.