Abstract

A lot of production processes involve mixing steps. The understanding of fluid flows in mixing processes of liquid components is needed in order to develop appropriate mixers for the chemical and pharmaceutical industry. Especially mixing in microfluidic systems is a challenge due to the diffusion-based processes. A multi-lamination micromixer with chessboard outlet geometry is used to induce the mixing process. To get comprehensive information about the mixing process, the velocity profile of the fluid flow and the species concentration distribution during the mixing process should be measured. Thus, we have combined particle image velocimetry (PIV) and Raman scattering. To enable rapid detection, the Raman imaging mode is used to visualise the concentration distribution. By this setup light sheets along and orthogonal to the outlet of the micromixer are recorded and synchronized with PIV measurement. As a model system we have used water and ethanol/methanol, enabling a selective monitoring of the substances by choosing appropriate spectral areas. The PIV is recorded based on Mie scattering and fluorescence using microsphere tracers. In this study, we present a setup for determination of the velocity profile field and the spatial concentration distribution of water and ethanol/methanol in a micromixer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.