Abstract

Noninvasive characterization of microcirculation at the level of both coronary conductance and resistance vessels is of major importance for the understanding of microvascular adaptive processes in the heart. The objective of this study was to determine simultaneously myocardial perfusion and microvessel diameters in the myocardium by magnetic resonance (MR) imaging within the same heart. A MR imaging method is presented which combines high-resolution perfusion measurement (140 × 140 μm2) by spin labeling with flow-weighted MR microscopy of coronary microvessels (φ > 140 μm). We determined changes in myocardial perfusion and vessel diameters of isolated beating rat hearts (n = 10) at rest and during administration of nitroglycerin (0.5 mg/min). Alterations in perfusion were validated by microsphere measurements. Under the influence of nitroglycerin an increase in perfusion (+2.51 ± 0.4 ml · min−1 · g−1, mean ± SEM) and vessel diameters (+14.22 ± 1.92%) could be observed. Endocardial perfusion revealed a modest enhanced susceptibility to nitroglycerin in comparison to epicardial perfusion. Analysis of vessels according to their diameters showed no significant differences. MR imaging allows the noninvasive and simultaneous determination of conducting arteries and smaller resistance vessels in one and the same beating rat heart. Due to an excellent spatial resolution of these methods, transmural characterization of both parameters at rest and during vasodilation is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.